Physiological Response of Crocosphaera watsonii to Enhanced and Fluctuating Carbon Dioxide Conditions
نویسندگان
چکیده
We investigated the effects of elevated pCO2 on cultures of the unicellular N2-fixing cyanobacterium Crocosphaera watsonii WH8501. Using CO2-enriched air, cultures grown in batch mode under high light intensity were exposed to initial conditions approximating current atmospheric CO2 concentrations (∼ 400 ppm) as well as CO2 levels corresponding to low- and high-end predictions for the year 2100 (∼ 750 and 1000 ppm). Following acclimation to CO2 levels, the concentrations of particulate carbon (PC), particulate nitrogen (PN), and cells were measured over the diurnal cycle for a six-day period spanning exponential and early stationary growth phases. High rates of photosynthesis and respiration resulted in biologically induced pCO2 fluctuations in all treatments. Despite this observed pCO2 variability, and consistent with previous experiments conducted under stable pCO2 conditions, we observed that elevated mean pCO2 enhanced rates of PC production, PN production, and growth. During exponential growth phase, rates of PC and PN production increased by ∼ 1.2- and ∼ 1.5-fold in the mid- and high-CO2 treatments, respectively, when compared to the low-CO2 treatment. Elevated pCO2 also enhanced PC and PN production rates during early stationary growth phase. In all treatments, PC and PN cellular content displayed a strong diurnal rhythm, with particulate C:N molar ratios reaching a high of 22:1 in the light and a low of 5.5:1 in the dark. The pCO2 enhancement of metabolic rates persisted despite pCO2 variability, suggesting a consistent positive response of Crocosphaera to elevated and fluctuating pCO2 conditions.
منابع مشابه
Toxin production by Crocosphaera watsonii: structure and influence on nutrient cycling in the upper ocean
Cyanobacteria are abundant components of the biosphere and play a crucial role in carbon sequestration and oxygen supply to the atmosphere. In addition to their photosynthetic capabilities, some cyanobacteria contribute to global ocean productivity by fixing inert atmospheric nitrogen gas (N2) into a bioavailable form. Many of these nitrogen-fixing bacteria (diazotrophs) also produce toxic meta...
متن کاملTwo subpopulations of Crocosphaera watsonii have distinct distributions in the North and South Pacific.
Crocosphaera watsonii is a unicellular nitrogen (N2)-fixing cyanobacterium with ecological importance in oligotrophic oceans. In cultivated strains there are two phenotypes of C. watsonii (large and small cells) with differences that could differentially impact biogeochemical processes. Recent work has shown the phenotypes diverged through loss or addition of type-specific genes in a fraction o...
متن کاملPhosphorus scavenging in the unicellular marine diazotroph Crocosphaera watsonii.
Through the fixation of atmospheric nitrogen and photosynthesis, marine diazotrophs play a critical role in the global cycling of nitrogen and carbon. Crocosphaera watsonii is a recently described unicellular diazotroph that may significantly contribute to marine nitrogen fixation in tropical environments. One of the many factors that can constrain the growth and nitrogen fixation rates of mari...
متن کاملConstitutive Extracellular Polysaccharide (EPS) Production by Specific Isolates of Crocosphaera watsonii
Unicellular dinitrogen (N(2)) fixing cyanobacteria have only recently been identified in the ocean and recognized as important contributors to global N(2) fixation. The only cultivated representatives of the open ocean unicellular diazotrophs are multiple isolates of Crocosphaera watsonii. Although constituents of the genus are nearly genetically identical, isolates have been described in two s...
متن کاملModelling light-dark regime influence on the carbon-nitrogen metabolism in a unicellular diazotrophic cyanobacterium
We propose a dynamical model depicting nitrogen (N2) fixation (diazotrophy) in a unicellular cyanobacterium, Crocosphaera watsonii, grown under light limitation and obligate diazotrophy. In this model, intracellular carbon and nitrogen are both divided into a functional pool and a storage pool. An internal pool that explicitly describes the nitrogenase enzyme is also added. The model is success...
متن کامل